

\$ whoami

- 🕥 @d3c0der
- Mohammad Reza Zamiri aka d3c0der
- Security researcher at ZDResearch
- Formerly at Iranian Central Bank CERT
- http://scadapot.com

Outline

- 1. An overview of Honeypots and ICS Honeypots
- 2. ICS Honeypot fingerprinting methods
- 3. The Framework
- 4. Using the framework to find Gaspots online
- 5. Conclusion

Honeypot?

- Computers masquerading as vulnerable
 - Recording all interactions with users
- Two broad categories, based on service and interaction level
 - High-interaction
 - Low-interaction

Industrial Control System (ICS)

- Monitors & controls the operation of devices in industrial environments
- ICS were traditionally air-gapped
 - i.e. physically isolated from the outside world
- Now linked to the Internet to allow remote control and monitoring

ICS honeypot

- A significant number of threats are directed towards ICS nowadays
 - · Due to its direct physical impact on the world

- ICS Honeypots are rare, because they need to model industrial systems that are not as publicly available
 - But they are a great source of discovering attacks against ICS

Why fingerprinting?

- Cyber Threat Intelligence (CTI) services are becoming popular
- Large data used by these services is obtained via OSINT
 - The other part via proprietary sensors of the services
- If the attackers recognize these sensors, they will send wrong data to them and protect against detection
- The stealthiness of a honeypot is also an important factor in an organization's overall security strategy

How are bad guys attacking ICS

- Many ICS attacks start with scanning ICS related ports
 - Also google hacking is useful
- There are engines like shodan and censys that make searching for Internet-connected devices easy
- For a huge number of attackers finding an open ICS port is enough of an starting point
- E.g., https://github.com/d3coder/ICS-Hunter

Classifying Fingerprinting Methods

Looking for default configuration

- Default options for a honeypot are generally the biggest weakness
- Works well on unconfigured & misconfigured honeypots
- The bad news is that there are many ICS honeypots out there with default config!

Identifying the environment

- Scanning network services and checking operating system default open ports
- Looking for hosting services (e.g., cloud)
- OS detection with NMAP, Xprobe2, p0f, etc.
- Other related characteristics (TCP/IP headers, ICMP echo response time, etc.)

Incomplete implementation of a protocol

- Low interaction honeypots do not implement complete feature sets
- Industrial network protocols have unique features
 - For example many of them do not support encryption or even authentication
- Attackers can start to explore more features of an ICS service and investigate suspicious cases

Unusual ICS behaviors

- ICS are designed to monitor metrics such as temperature, pressure, etc.
- The result of a natural metric monitoring must be a dynamic value
- A system that demonstrates fixed/inflexible metrics is emitting unusual ICS behavior
- Just an open ICS port doesn't mean a real ICS device

Fingerprinting ICS Honeypots

Common ICS honeypots

- **Conpot** ICS honeypot for collecting adversary motives and methods
- GasPot honeypot designed to simulate a Veeder-Root Guardian AST
- Scada-honeynet simulates a variety of industrial networks and devices
- **Gridpot** Open source tools for realistic-behaving electric grid honeynets

Default config detection example / Conpot

- Previously some default signatures of Conpot were published by other researchers
- We identified some less-known signatures by investigating Conpot's configuration files

Conpot default config detection (well-known signatures)

Protocol	port	signature	Shodan	Censys
Ciamana C7	400	PLC name: Technodrome	214	185
Siemens S7 10	102	Plant identification: Mouser Factory	215	162
		Serial number of module: 88111222	182	92

Conpot default config detection (less-known signatures)

Protocol	Port	Signature	Shodan	Censys
HTTP	80	Last-Modified: Tue, 19 May 1993 09:00:00 GMT	240	133
TELNET	50100	Connected to [00:13:EA:00:00:0	31	-
IEC104	2404	Data Received: 680e00000000	13	-
Ethernet IP	44818	Product name: 1756-L61/B LOGIX5561	83	-

Checking a less-known signature

- Shodan saying it's an industrial control system!
- https://www.shodan.io/host/104.250.108.68
- Lets take a look at it's http response headers

Checking a less-known signature


```
<headers>
    <entity name="Last-Modified">Tue, 19 May 1993 09:00:00 GMT</entity>
    <entity name="Content-Type">text/html</entity>
    <entity name="Set-cookie">path=/</entity>
</headers>
```


Identifying the environment example / Conpot

- OS detection is a good way to start
- A network scan can reveal some open ports that aren't related to ICS protocols
- Here is the result for a Conpot hosted on Debian

Incomplete protocol implementation example / Conpot

 In many cases (default config cases) the result of scanning Modbus on a Conpot with PLCScan is: unknown protocol

```
_ 🗆 ×
                   Command Prompt
C:\Users\d3coder\Desktop\plcscan-master>plcscan.py 175.96.80.237
Scan start...
Module
               : v.0.0
                                     (0000000000000000
(6f75746c6574000
Name of the PLC
               : outlet
Name of the module
               : Siemens, SIMATIC, S7-300
                                     (5369656d656e732
Plant identification
               : Power Corporation
                                     (506f77657220436
: Original Siemens Equipment
                                     (4f726967696e616
Copyright
c205369656d656e732045717569706d656e740000000000000)
                                     (313631313136363
Serial number of module : 16111663
(494d3135312d382
Module type name
               : IM151-8 PN/DP CPU
OEM ID of a module
                                     (0000000000000000
(0000000
Location designation of a module:
175.96.80.237:502 unknown protocol
Scan complete
```


Incomplete protocol implementation example/Scada-honeynet

• Source: Digitalbond

```
sjhilt@db-assessment:~/Desktop/plcscan-read-only$ python plcscan.py
Scan start...
:502 [Errno 104] Connection reset by peer
:502 unknown protocol
Scan complete
```


Incomplete protocol implementation example/Gaspot

- Gaspot only supports five ATG display format commands
- The response to other command is a hard-coded value: conn.send("9999FF1B\n")

Unusual ICS behaviours example/Gaspot

- Monitoring a protocol and waiting for chnages is a nice idea (no change has a bad meaning!)
- We can do it for every ICS protocol that is providing a physical quantity such as temperature, pressure, etc

Unusual ICS behaviours example/Gaspot

First check

```
_ 🗆 ×
                                  Telnet 52.39.87.62
Git.
       120100
             01/30/2017 00:23
                             STATOIL STATION
                                             IN-TANK INVENTORY
     VOLUME TC VOLUME
                                             WATER
                                                       TEMP
                                                             1 SUPER
     7433
               7435
                                43.38
                                          1.89
                                                  57.99
                                                          2 UNLEAD
  2879
            3003
                     7701
                             51.11
                                       3.01
                                               59.68
                                                       3 DIESEL
841
                  7422
                                                      PREMIUM
                                                                             2139
                                         57.39
```


Unusual ICS behaviours example/Gaspot

• After 13 hours there is no change in ullage, height, water and temp!

Let's run the framework!

Our Methodology

- So based on the methods we presented, We tried to implement these methods in a framework
- First we scan the whole internet by using Masscan for specified ics ports
- Then we apply our methods on the detected Ip's by using our framework

The Framework

- The framework is now available on github as part of OWASP-Nettacker project:
- https://github.com/zdresearch/OWASP-Nettacker/tree/master/lib/payload/sca nner/ics_honeypot

Detecting Gaspot

 So let's detect how many Gaspot are running around the world?

Customizing the Framework

□ Default Configuration check:

We used the Gaspot configuration file in order to identify the default cases

□Incomplete protocol implementation:

• We used the "I30100" command, which was not supported by Gaspot

□Unusual ICS behavior:

With a time interval of less than 2 hours, we sent two requests with I20100 command to these
systems and then compared the results, so we have a change percentage

\square OS detection:

• We used **nmap** to detect operating systems for every host with at least one positive answer to our three previous methods

Gaspot based machines analysis result

HOST:	CHANGE PERCENTAGE:	DEFAULT CONFIG:	I30100 TRAP:	NMAP OS Detection:
139.59.XX. XX	10.4166666667%	TRUE	TRUE	Linux 3.X 4.X
207.154.XX. XX	10.4166666667%	TRUE	TRUE	Linux 3.X 4.X
107.170.XX. XX	10.4166666667%	TRUE	TRUE	Linux 3.X 4.X
138.197.XX. XX	10.4166666667%	TRUE	TRUE	Linux 3.X 4.X

Real ATG device result examples

HOST:	CHANGE PERCENTAGE:	DEFAULT CONFIG:	I30100 TRAP:	NMAP OS Detection:	
108.58.XX. XX	15.9090909091%	FALSE	TRUE	Larus 54580 NTP server (97%)	
67.158.XX. XX	18.4210526316%	TRUE	FALSE	dell embedded (97%)	
24.39.XX. XX	24.444444444%	FALSE	TRUE	Lantronix embedded (98%)	
24.250.XX. XX	32.5%	TRUE	FALSE	Linux 2.6.XOS	
				ZOZE	DResearch

The final results

Number of IPv4 addresses:	Host with open 10001 ports:	ATG devices:	suspicious cases:	Gaspots:
4,294,967,296	4,133,186	4,838	102	17

How about shodan?

• There was only "9" identified Gaspot on shodan at the time of our scan

Conclusion

 With an increasing number of skilled hackers focusing on ICS, the need for more accurate ICS Honeypots is evergrowing

 A closer look at the simulation of ICS protocols and randomization of default configurations can be useful

