

Emerging threats in ICS Systems

Matthew Angle

Laboratory for Electromagnetic and Electronic Systems

Massachusetts Institute of Technology

Cyber to Physical Risks with Major Consequences

German steel mill suffered "massive damage" following a cyber attack

U.K. Power Grid is Under Attack From Hackers Every Minute, Says Parliament

Unique Aspects of Attack on Cyber-Physical Systems

- Real, Physical Damage can occur
- Not always Possible to Convert to Manual Control
- Often the Safety is in Software
 - Which can be turned off or changed
- Failures no Longer Independent
 - If 8 generators, one might fail mechanically ...
 The other 7 should continue to operated
 - But, a cyber-attack that damages one generated can just as easily damage the other 7 at the same time
- "Recovery" from physical damage can take long time

Example: MIT Cogen Plant

- 21 MW Natural Gas Turbine Generator
- Waste heat used to produce steam that is then used to heat and cool campus

MIT Cogen Plant

Date : 3/12/2015

Scale ; NTS

Sht no. : D1

Example of "Recovery" Time

- At MIT Co-Gen, one turbine failed ...
 - Not cyber-attack, just a defective nozzle that allowed unpurified water in
- How long did it take to repair?
 - 3 months!
- Why?

Cybersafety Analysis

- Start top-down ...
- What are you trying to protect / prevent
- Version 1: Make sure that the lights do not go out ...
- Version 2: Make sure that the lights do not go out ... for a long time!
- How can that happen?

Interesting target: Pumps

- Used in all kinds of Industrial Control Systems
 - Gas pipelines
 - Nuclear plants
 - Water treatment
 - Others?

CoGen Vulnerability – Pumps and VFD

Variable Frequency Drive

- Used on most pumps
 - Allows operation of induction (AC) machines at different speed
- Component that was attacked by Stuxnet
- Usually have programmable limits to protect machinery they drive
 - Controlled by software
- Contain capacitors used to store energy on the DC bus

Small-Scale Demonstration

Control Circuity for VFD

Code Modification

```
1022 #endif
                               1023
                                       // Check for PFC over voltage
                               1024
                               1025 #if(INCR BUILD == 1)
                                       if(Vbus > VBUS OVP THRSHLD)
                               1026
                               1027 #else
                                       if(VbusAvg > VBUS_OVP_THRSHLD)
                               1028
                               1029 #endif
                               1030
                               1031
                                           //OV flag = 1;
222
                               1032
                                           //EALLOW;
       /* DPlib initialization
340
                               1033
                                           //EPwm4Regs.TZFRC.bit.OST = 1; // Software forced PWM trip
341
       DPL_Init();
                               1034
                                            //EDIS;
342
                               1035
343 #if (INCR BUILD == 1) //
                               1036
                                            //VbusTargetSlewed = 0;
       // Module connections
344
                               1037
       // ADC connections
345
                               1038
       ADCDRV_1ch_Rlt4 = &Vbu: 1039
346
                                       // Calculate RMS input voltage frequency
       ADCDRV_1ch_Rlt5 = &Ipfc_1040
347
                                        sine mainsV.Vin = Vrect >> 9;
                                                                                // IQ15 format
       ADCDRV_1ch_Rlt6 = &VL_1<sub>1041</sub>
348
                                       SineAnalyzer MACRO(sine mainsV);
       ADCDRV_1ch_Rlt8 = &VN_1 1042
349
                                       VrectRMS = (sine mainsV.Vrms) << 9;</pre>
                                                                                // Convert from Q15 to Q24 and save as VrectRMS
350
351
       // Math avg block connections - Instance 2
       MATH EMAVG In2 = &Vbus;
352
       MATH EMAVG Out2 = &VbusAvg;
353
       MATH_EMAVG_Multiplier2 = _IQ30(0.00025);
354
355
       // Connect the PWM Driver duty to an input variable, Open Loop System
356
       PWMDRV_2ch_UpDwnCnt_Duty4 = &DutyA;
357
358
       // Variable initialized for open loop test
359
       DutyA = _{1Q24(0.5)};
361 #endif // (INCR BUILD == 1)
```

Industrial-Scale VFD

- Chilled Water
 Pump VFD
- 400 HP motor
- Energy storage scales roughly with rated power and inversely with switch frequency

CoGen Vulnerability

- Switches on campus controlled from control room (like Ukraine attack)
- Turbine synchronization controlled from control room (Aurora demonstration)
- Turbine monitored remotely by Siemens
- Steam, chilled water valves controlled from control room
- Pump VFDs adjustable from control room (speed only)

CoGen Vulnerabilities – Potential Ways In

- Icetech connection
 - Data from control room
 - Connection unknown
- Siemens Turbine control hardware
 - Remote diagnostic
 - System capable of remote engineering mechanism for turning this off?
- Combination of Trane and York chillers
 - Modern chiller control systems, with network connectivity
- Contractor maintains and updates systems
- Unhappy insider?

CoGen Vulnerabilities

Turbine

- Must be kept spinning while it cools
- Lead-acid battery bank provides power to motor that turns rotor
- Natural gas pressure regulators step down from 300 PSI line to 25 PSI feed, pneumatic actuation
- Lead-acid battery bank used to start backup diesels
- Icetech watches electricity and gas prices
 - Makes recommendations on turbine throttling
 - Determines how much of campus power comes from grid vs. turbine
 - Changes turbine throttle up to 3 times per day

Emerging threats in ICS Systems

Matthew Angle

Laboratory for Electromagnetic and Electronic Systems

Massachusetts Institute of Technology