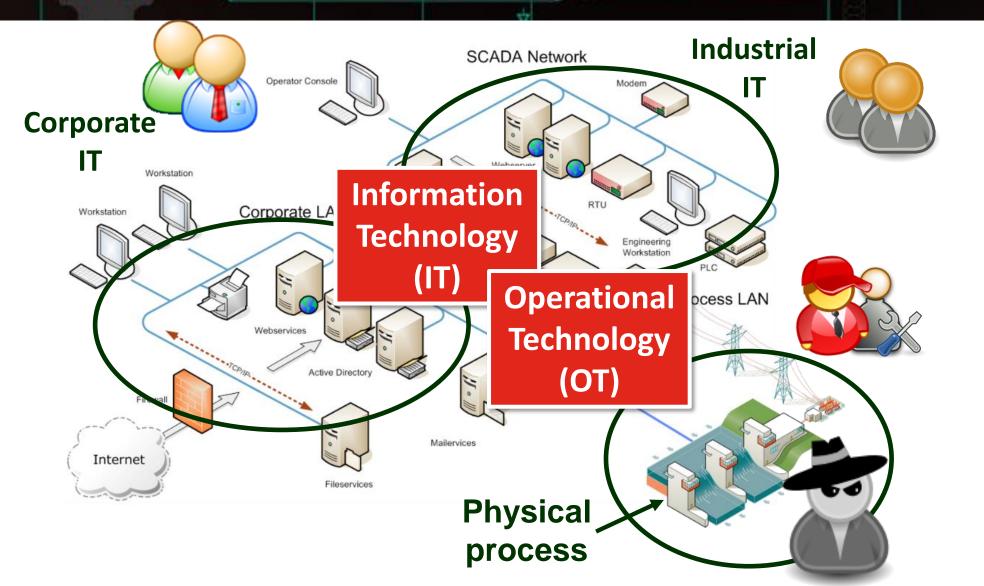
Deep Dive: Likely, Real and Unlikely Cyber-Physical Threats to ICS

Marina Krotofil

Kaspersky[®]

St. Petersburg September 27-29, 2017


.

Just one of those opinionated opinions :-)

Industrial Control Systems

 \times

ICS security

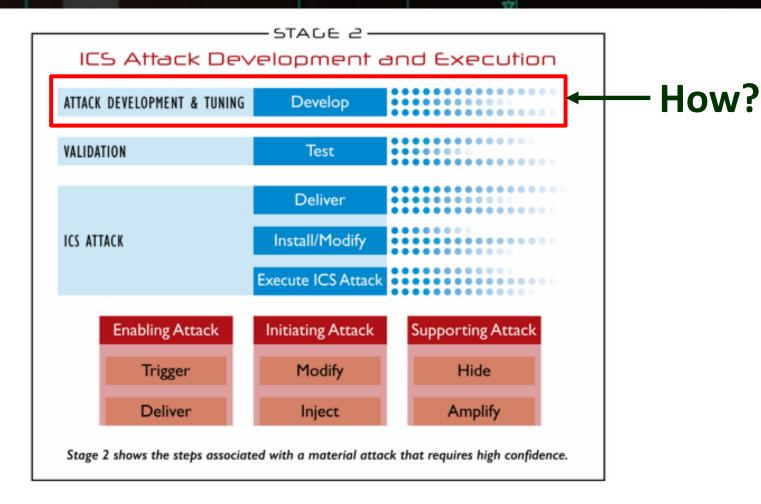
...

IT security

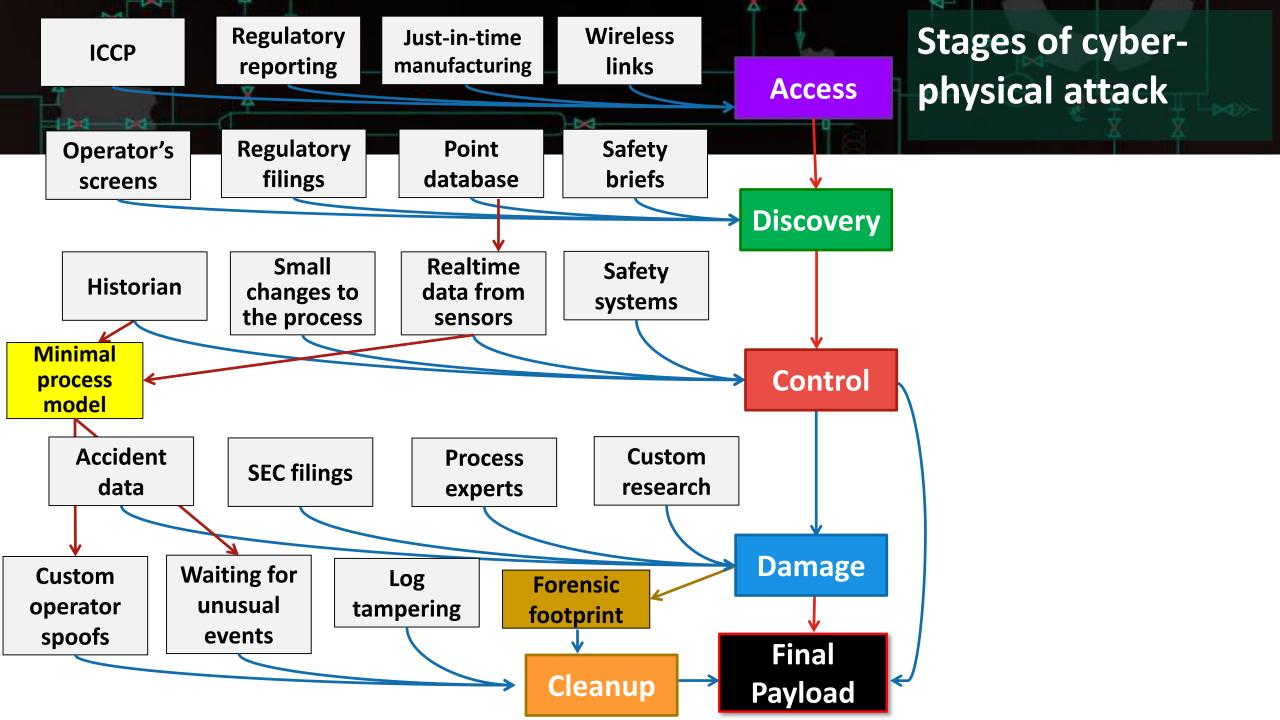
(cyber-security ->
taking over the
infrastructure)

OT security (causing impact on the operations -> process and equipment)

Focus of the talk


Attack Development stage in ICS kill chain

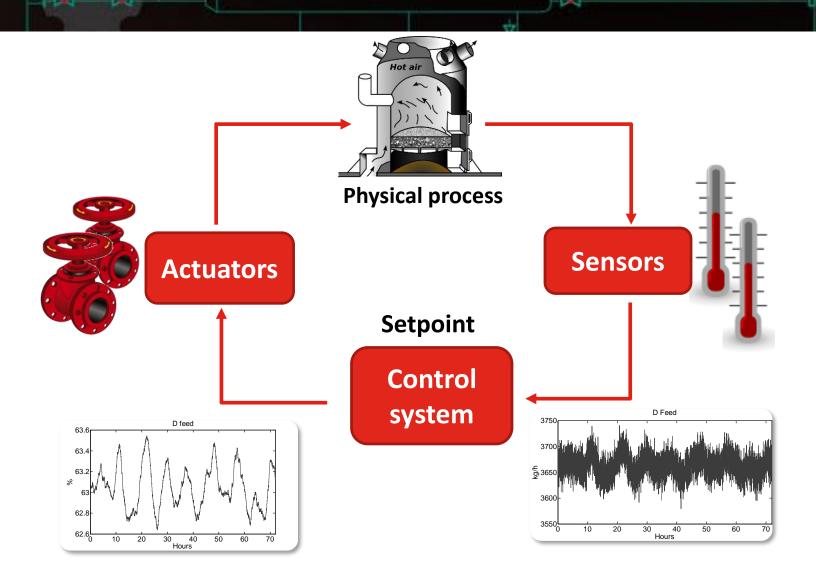
->>


Δ

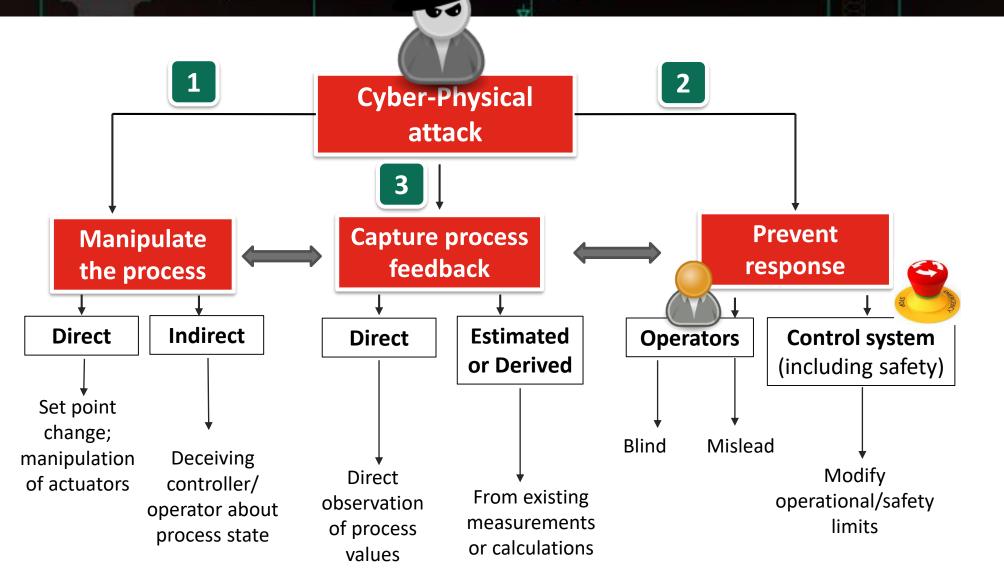
X

×

M. Assante, R. Lee. The Industrial Control System Cyber Kill Chain. SANS, 2015.



Let's dive into some specifics


In control world it is all about control loops

1

Cyber-Physical Attack

8

X

ЪĸС

Why feedback loop is so important?

In most scenarios involving process manipulation, attacker needs a feedback mechanism to know how well she is doing ACTION

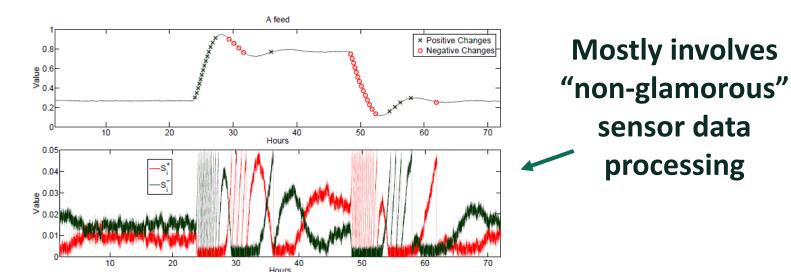
FEEDBACK

EFFECT

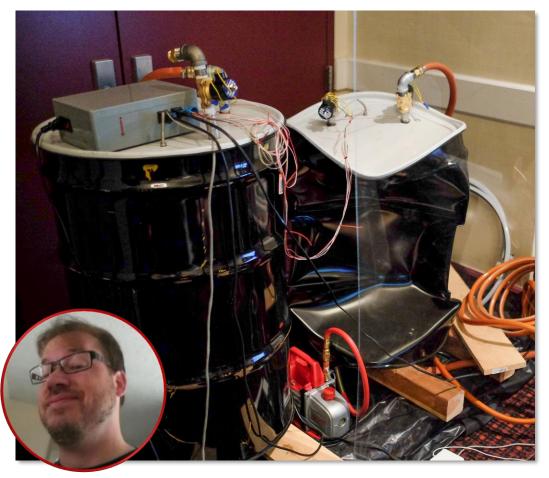
- Is attack succeeding/ failing?
- Attack effect propagation
 - To monitor the extent of attack effect propagation
 - To monitor state in the neighboring systems
- To calculate <u>Time-to-Damage</u> to plan for concealing activities
 - When is the time to return control back to control system

Plant designs are attacker ufriendly

So far I haven't ever worked with a scenario when feedback mechanism was easily or at all obtainable


□ Typically values needed for attack are not measured

- No readily available control methods exist
- Multiple strategies to obtain feedback (but none is easy)


ACTION

FEEDBACK

EFFECT

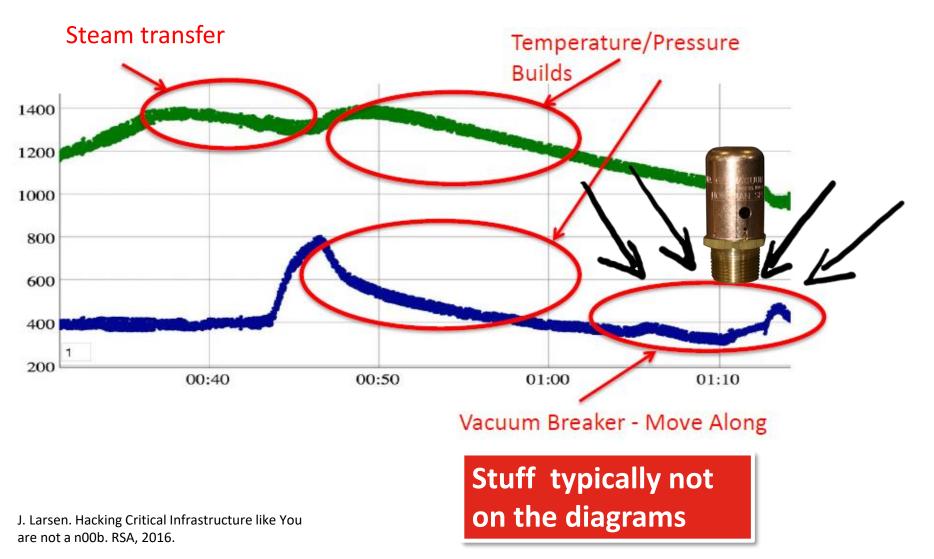
Parameterization of cyber-physical attack

<u>J. Larsen.</u> Physical Damage 101: Bread and Butter Attacks. Black Hat USA, 2015.

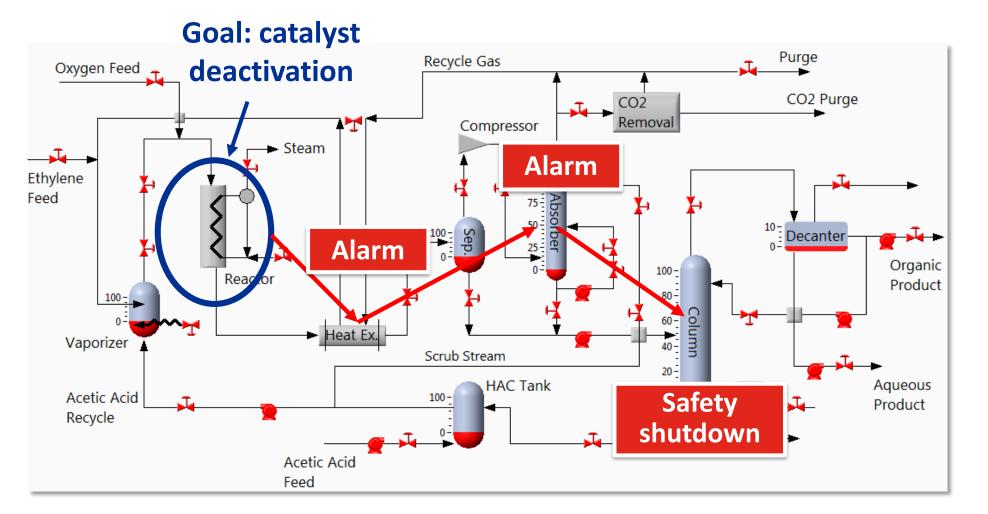
- □ Vacuum collapse Implosion attack
- <u>"Generic"</u> type of attacks works across multiple industries
- The final payload still needs to be <u>parameterized</u> on <u>facility-to-facility basis</u>
- □ This demo: <u>11</u> destroyed barrels
- \$\$\$ in costs of equipment and man hours

How to measure SUCCESS of implosion attack?

http://www.folsomtelegraph.com/article/water-supply-folsom-restored

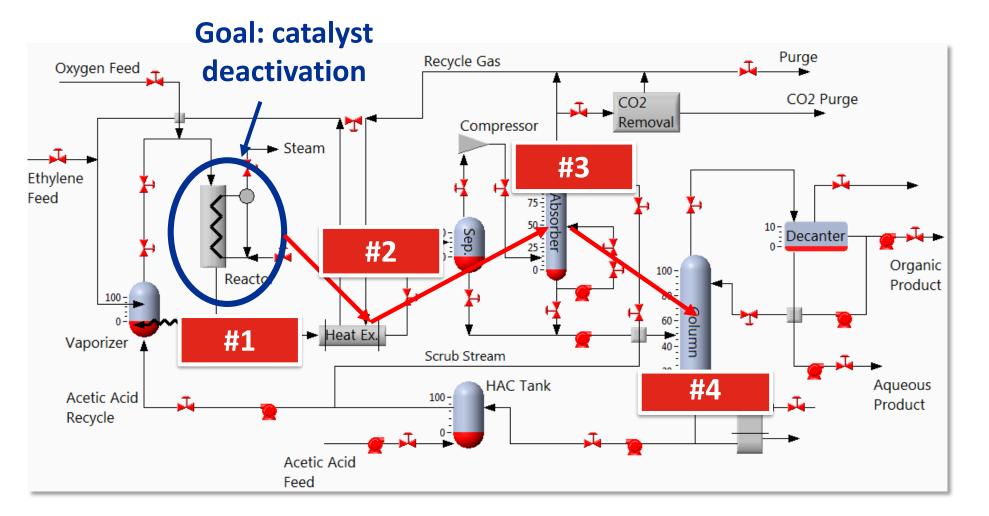


http://www.stgeorgeutah.com/news/archive/2013/12/17/jek-washingtoncountys-main-water-pipeline-collapses-district-urges-wise-water-use


There is no sensor measuring "roundness" of the pipe

How to measure FAILURE of implosion attack?

 \bowtie



Alarm and physics propagation

 \times

Number of needed implants

X

×

>>

Growing complexities and uncertainties

An exploit can be always built, but

- What will be the cost of final effort?
- What is total cumulative uncertainty?

	Start Conditions	Learning	Control	Spoof	Success Feedback	Failure Check	Control Out	Spoof Out
vIAlcohol				95	95			
vlCatch				85				
mpCatch								
mplgnitor				81				
ptPlateStrikePos				82				
mpFountainOn			82					
mpFountainSpeed			95	95		95		
gnitorOn						90		
etpntPssFountain			91	91		91		
						Total Uncertainty	1168	
						Number of Implants	2	
						Total	2336	

J. Larsen. Hacking Critical Infrastructure like You are not a n00b. RSA, 2016.

Reverse Engineering Physical Processes: MK

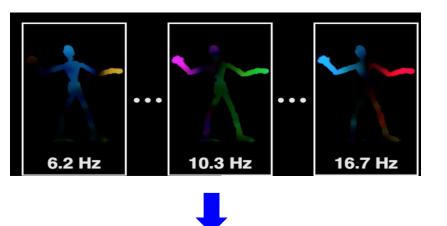
 A. Winnicki, M. Krotofil, D. Gollmann. Reverse Engineering Physical Processes in Industrial Control Systems. In proceedings of 3rd ACM Cyber-Physical System Security Workshop, 2017.

17.5

15.5

0

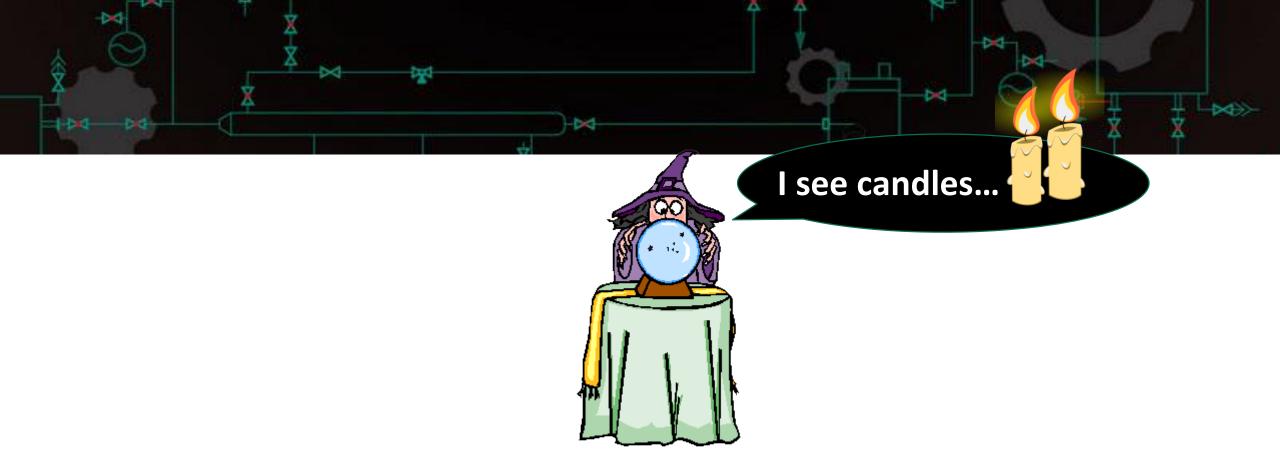
20 40 60 80 100


Standard approaches from control engineering worked, but did not serve well our needs

9 months of work (tons of testing)

Eventually we developed a customized approach based on few standard and home brewed algorithms

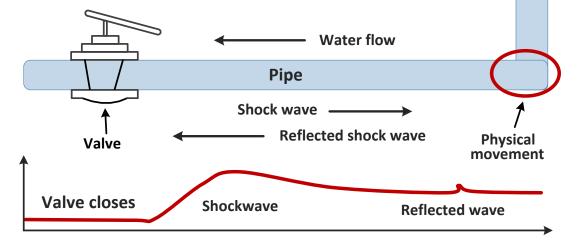
Reverse Engineering Physical Processes: JL



- □ Abe Davis -> automatic generation of physical models using modes (common frequencies)
- □ JL tested the approach to building process models
- Challenge #1: Process data is not as rich as image data

- Challenge #2: Not suitable for processes with frequent changes of states (on/off)
 - E.g. water treatment

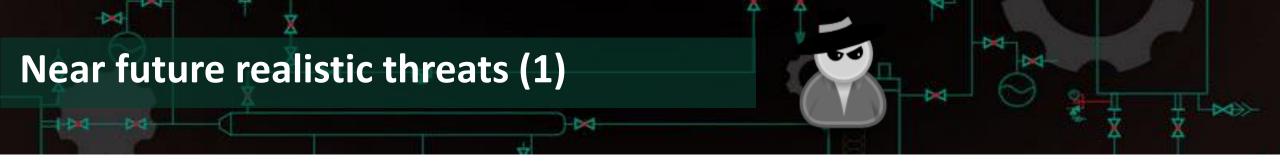
J. Larsen. Automatic Generation of Attack Models.S4, 2016.



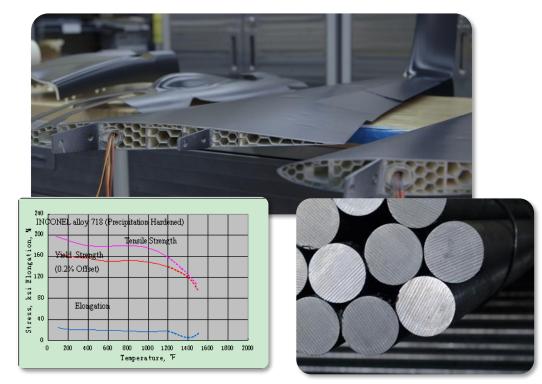
Let's make some predictions

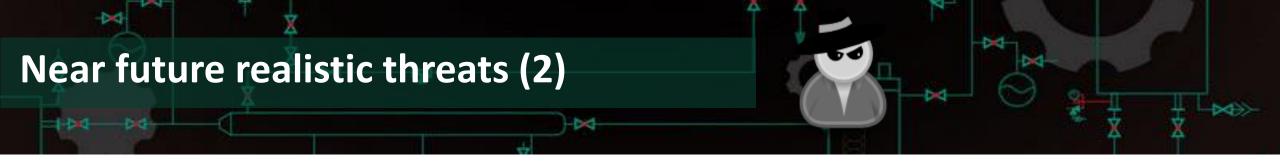
Near future unlikely mass-scale attacks

Complex cyber-physical attacks


- Of high engineering precision
- Requiring high coordination
- Requiring considerable time and effort

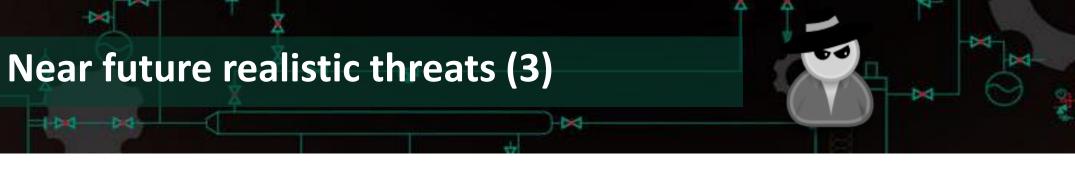
- Attacks which take unknown/extended time to cause needed impact
 - Killing catalyst vs. disconnecting circuit breakers


□ In general all attacks which require feedback loop


□ Attacks with unclear collateral damage (?)

□ Attacks with instantaneous/clear impact

- Design deviation attacks ("Out-of-Spec" attacks), e.g. in additive manufacturing
- Equipment shut off, e.g. in power distribution industry



Attacks which do not require extensive/custom OT comprehension (physical process, failure conditions, control strategies, alarms, etc.)

- More of cyber-oriented attacks; attacks executed over HMI
- "Easy Button" attacks

		eas		
Code	Name	Logic address	Access	Туре
TDC1	IDC injection time	16#28A2 = 10402	R/W	UINT (Unsigned16)
JOG	Jog assignment	16#2B66 = 11110	R/WS	WORD (Enumeration)
PS4	4 preset speeds	16#2C8A = 11402	R/WS	WORD (Enumeration)
PS8	8 preset speeds	16#2C8B = 11403	R/WS	WORD (Enumeration)
SP8	Preset speed 8	16#2C98 = 11416	R/W	UINT (Unsigned16)
JPF	Skip frequency	16#2C25 = 11301	R/W	UINT (Unsigned16)
PIF	PID : PI function feedback assignment	16#2E/D = 11901	R/WS	WORD (Enumeration)

□ OT attacks which parameters can be "calculated" or reliable estimated, e.g. cavitation in pumps

- Cavitation conditions can be calculated
- One never exactly knows the intensity of cavitation (but can try to maximize it)

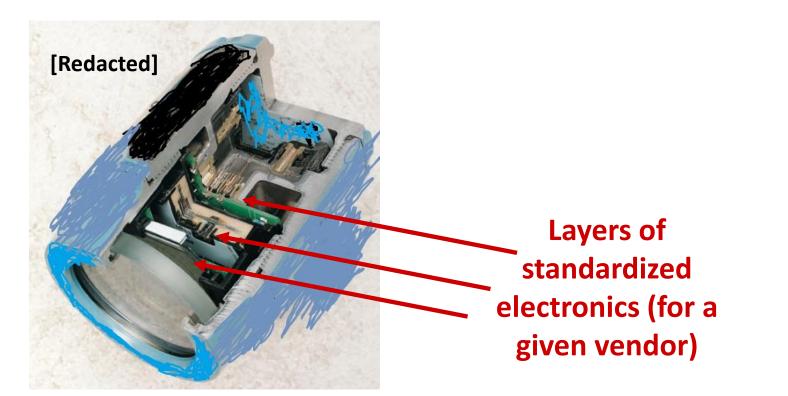
Pump impeller inspection at Palisades nuclear power plant

□ It takes just a small leak and a drone to cause ignition

Near future realistic threats (4)

Supply-chain attacks

- Allows to bypass multiple levels of security


End Time 👻

Thursday, February 23, 2017 8:57...

Thursday, February 23, 2017 8:56...

Name

Better scaling of attack efforts

🔁 💮 🕼 https://	D = 😳 Certificate C	ManageEngine ServiceDesk Plus	🎯 Телефонний довід
ile Edit View Favorites	Tools Help		
👔 🥘 Observel T 📆 SD8 📆 S	D9 🔞 ERA 🔯 Exchange Admin Cente	r 🧃 Cisco ESVA	
(A) 100 1 200 1 1	t M4555 MFP		
IIII HP LaserJe	T M4555 MFP		
V			
HP LaserJet M4555 MFP			
V	-		
HP LaserJet M4555 MFP			_
HP LaserJet M4555 MFP	Device Status		
HP LoserJet M4555 MFP Information Device Status			

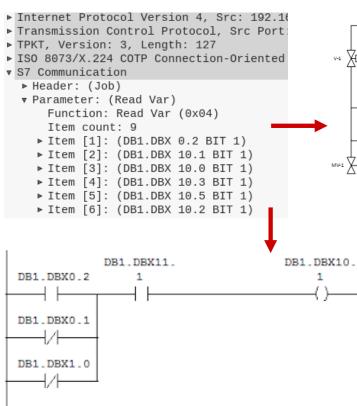
Attacker Address

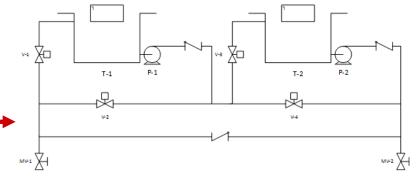
Target Address

69.172.201.153

69.172.201.153

Real threats and attacker capabilities (1)


- Massive espionage (stale news)
 - Increasing number of targeted process-related information espionage
- Non-ICS specific attacks
 - Ransomware, KillDisk, etc.
- Cyber-oriented attacks
 - Attacks executed over HMI; tools for targeted protocol and control equipment manipulation
 - Recently, tools were left behind by the adversary



Real threats and attacker capabilities (2)

Automation of control infrastructure reconnaissance

Most known example being usage of OPC

Most critical piece of info

N	ame	Connection	Data type	Address
	Auto Mode HMI On/Off	Field Site 3 PLC (ET200S)	Bool	DB 1 DBX 0.1
	Manual Mode On/Off	Field Site 3 PLC (ET200S)	Bool	DB 1 DBX 0.2
	Pump 1 Manual On/Off	Field Site 3 PLC (ET200S)	Bool	DB 1 DBX 13.2
	Pump 1 State	Field Site 3 PLC (ET200S)	Bool	DB 1 DBX 10.2
	Pump 2 Manual On/Off	Field Site 3 PLC (ET200S)	Bool	DB 1 DBX 13.5
	Pump 2 State	Field Site 3 PLC (ET200S)	Bool	DB 1 DBX 10.5
	Valve 1 Manual Open/Closed	Field Site 3 PLC (ET200S)	Bool	DB 1 DBX 13.0
	Valve 1 State	Field Site 3 PLC (ET200S)	Bool	DB 1 DBX 10.0
	Valve 2 Manual Open/Closed_0	Field Site 3 PLC (ET200S)	Bool	DB 1 DBX 13.1
	Valve 2 State	Field Site 3 PLC (ET200S)	Bool	DB 1 DBX 10.1
	Valve 3 Manual Open/Closed_1	Field Site 3 PLC (ET200S)	Bool	DB 1 DBX 13.3
	Valve 3 State	Field Site 3 PLC (ET200S)	Bool	DB 1 DBX 10.3

B. Green, M. Krotofil, A. Abbasi. On the Significance of Process Comprehension for Conducting Targeted ICSS Attacks. In proceedings of 3rd ACM Workshop on Cyber-Physical Systems Security & Privacy, 2017.

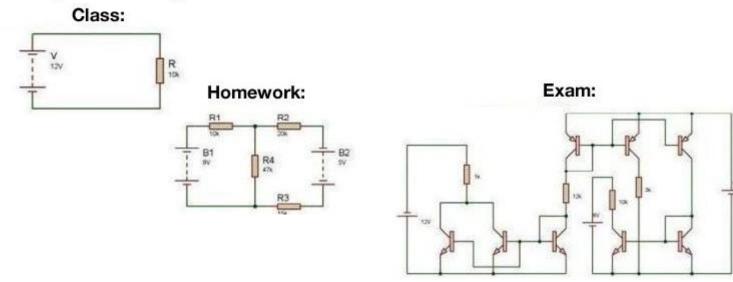
Real threats and attacker capabilities (2)

Automation of control infrastructure reconnaissance

- Most well-known example being usage of OPC

🛐 (рс р	rocess	Objects List Tool
<u>F</u> ile	<u>E</u> dit	<u>I</u> opis	<u>H</u> elp

Object	ОБр	ect Identifier	Signal Text	Block/Bit addr.	Station	IN	
S2B200:P10	STA2	STA2B2	Breaker position indication	1/2	41	IEC61850 Subnetwork.REF542_41.LD1.Q0CSWI1.Pos.stVal	
52B2Q0:P11	STAZ	STAZB2	Breaker open select command	5	41	IEC61850 Subnetwork.REF542_41.LD1.Q0CSWI1.Pos.ct5elOff	
S2B2Q0:P12	STA2	STA2B2	Breaker close select command	6	41	IEC61850 Subnetwork.REF542_41.LD1.Q0CSWI1.Pos.ct/SelOn	
S2B200:P13	STA2	STA2B2	Breaker open execute command	7	41	IEC61850 Subnetwork.REF542_41.LD1.Q0CSWI1.Pos.ctiDperOf	
S2B200:P14	STA2	STA2B2	Breaker close execute command	8	41	IEC61850 Subnetwork.REF542_41.LD1.Q0CSWI1.Pos.ctOperOr	
S2B2Q0:P15	STA2	STA2B2	Breaker device control block	8	41	IEC61850 Subnetwork.REF542_41.LD1.Q0CSWI1.Beh stVal	
S2B200:P16	STA2	STA2B2	Breaker open interlocked	0/16	41		
S2B2Q0:P17	STA2	STA2B2	Breaker close interlocked	0/16	41		
S2B200:P18	STA2	STA2B2	Cause of interlocking	0	41		
S2B200:P19	STA2	STA2B2	Breaker selection on manitor	0	41		
S2B200:P20	STA2	STA2B2	Breaker command event	0/16	41	IEC61850 Subnetwork.REF542_41.LD1.Q0CSWI1.Pos.Seld	
S2B200:P25	STA2	STA2B2	Breaker cancel command	9	41	IEC61850 Subnetwork.REF542_41.LD1.Q0CSWI1.Pos.ct/Can	
S2B2Q1:P10	STA2	STA2B2	Disconn. position indication	1/4	41	IEC61850 Subnetwork.REF542_41.LD1.Q1CSWI2.Pos.stVal	
S2B201:P11	STA2	STA2B2	Disconn. open select command	50	41	IEC61850 Subnetwork.REF542_41.LD1.Q1CSW12.Pos.ct/SelOff	
528201:P12	STAZ	STAZBZ	Disconn. close select command	51	41	IEC61850 Subnetwork.REF542_41.LD1.Q1C5W12.Pos.ct5elOn	
S2B2Q1:P13	STA2	STA2B2	Disconn. open execute command	52	41	IEC61850 Subnetwork.BEF542_41.LD1.Q1CSWI2.Pos.ctDperOf	
S2B2Q1:P14	STA2	STA2B2	Disconn. close execute command	53	41	EC61850 Subnetwork.REF542_41.LD1.Q1CSW12.Pos.ctDperOr	
S2B201:P15	STA2	STA2B2	Disconn, device control block	79	41	IEC61850 Subnetwork REF542_41.LD1.Q1CSWI2.Beh stVal	


Havex (2012-2014)Ukr power grid attack (2016)

Real threats and attacker capabilities (3)

□ Easily accessible facilities serve as training platforms

- Provide access to equipment and protocols
- Provide real-world level of complexity
- Allows to study human behaviors and reactions

Engineering

Conclusions

Cyber-physical attacks becoming new normal

- None of recent power grid hacks was publicly disaproved by any government
- At the same time owners of industrial infrastructures still struggling to believe in security threats

□ Attack tools getting more advanced and wide-spread

- Open-source tools
- Tools found in wild
- Tools for purchase

Distinction between governmental and criminal threat actors is fading

"Trading" and "business" relationships

