Designing Cyber Secured Building Management Systems (BMS)

Author and Presenter: **Daniel Ehrenreich** SCCE – SCADA Security, Israel



Kaspersky Industrial Cybersecurity Conference 2019 Security SCCE – SCADA

## **BMS shall be separately secured**

- Above ground workspace
  - Elevator, Smoke & fire, fire doors, access control, etc.
  - Security Cameras, HVAC, LV power, sensors, etc.
- External installations
  - MV feeders, Security CCTV, gates, sensors, etc.
  - Generator fuel, Emergency generator, lights, etc.
- Underground utility facilities
  - Cooling equip., Water & Sewage, Operator room, etc.
  - MV Generators, UPS, Computer Room AC (CRAC), etc.
  - Smoke & Fire alarms, Security CCTV, Fire doors, etc.



#### BMS incidents, attack vectors and impacts

- Energy control related attacks
  - Alter the power meter values
  - Modifying the light control
  - Resetting HVAC temp. & timing
- Operation related attacks
  - Power /HVAC outage in the building
  - Manipulating sewage control
  - Changing the biometric AC setting
- IT related attacks
  - Stealing data for a larger attack

- Security & safety related attacks
  - Activate smoke/fire alarms
  - CCTV turns blind or send fake pictures
  - Door and gate sensor's manipulation
  - Turning Off office and corridor lights
  - Turning fire doors to locked /opened
- Service Damage
  - CRAC system halt the DC operation
  - Office evacuation due to fake alarms
  - Phone, elevators not working

### The BMS attack – who might do that?

- Internally Generated Cyber Attacks
  - Targeting underground utility equipment
    - Direct access to an embedded PLC or an IIoT device
  - Mistaken action by an authorized person
    - Good intention-poor / wrong execution (!)
- Externally Generated Cyber attack
  - Defined intention to attack a specific building
    - State initiated APT type action
  - Negligently designed architecture poor zooning
    - Control Sections of the BMS exposed to internet (!)
    - Gradual compromising of safety barriers

#### **Conducted by:**

- Determined attacker
- Disgruntled employee
- Any person by intention
- Unintentional action

#### **Conducted by:**

- Determined attacker
- Disgruntled employee
- Hostile country Action
- Crime action

### The BMS attack – how it can be done?

- Supply Chain related attacks
  - BMS Equipment and software originated
    - The malware is inserted in new or repaired PLCs/computers
    - Embedded PLCs in a machine supplied with malware
    - Purchase of a malvertized IT component
  - Service team originated
    - Service PC infected by negligent use (at home)
    - Intentionally infected computer
    - Download of an infected software version
  - Backdoors left connected "easy problem solving"
    - Good intention to deliver fast response (!)
    - Poor zoning among BMS sections (lateral move)

# kaspersky



#### Conducted by:

- HR Service suppliers
- Vendors of HW and SW
- Servicemen unintentionally
- Intentional-planned attack

#### 1/2 **Structuring the cyber defense**

- **Define the operation zones** •
  - The DC, where critical information is stored
  - Underground zone where utility equipment resides
  - External utility equipment monitored by the BMS
  - Utility services: water, electric power, fuel, etc.
- Define the building function by criticalities •
  - CRAC operation for the data centers
  - HVAC for offices and underground areas
  - Smoke and fire detection in all zones

Security

- Elevators, air-conditioning, site security, etc.



# kaspersky

## Structuring the cyber defense 2/2

- Conduct assessment (start with most critical zones)
  - Attack-incentives of each group: Outage, Damage, Losses ...
  - Attack vectors: External, Internal, Supply Chain
  - Impact and probability of occurrence for each vector
  - Effectiveness of already installed defense measures
- Link the "probability of occurrence" to "impact"
  - Link each attack vector to an estimated probability

Kaspersky Industrial Cybersecurity Conference 2019

Security

- Evaluate the worst-case impact for each vector and zone
- Calculate the risks for each vector : R (risk) = P (probability) \* I (impact)
- Evaluate the applicable completing/compensating measures for each risk





SCCE – SCADA

## Dual BMS Monitoring : Main & 2<sup>nd</sup> Verification

- Role of the main monitoring
  - Interfacing to embedded PLCs via Modbus or BACnet (serial port)
  - Monitoring parameters produced by the integrated equipment sensors
  - Interfacing to a PLC, via serial to TCP protocol conversions
- Role of the 2<sup>nd</sup> verification
  - Interfacing to a different set of Analog
    & Digital sensors
  - Monitored by a dedicated PLC an integrated part of the Verification ICS

Kaspersky Industrial Cybersecurity Conference 2019 Security

- Use of separate Networks
  - Main monitoring system
  - Verification Monitoring



## Structuring redundant architecture

- Redundancy at the PLC level
  - Monitoring a sensor via 2 separate ports
  - Monitoring the same sensor with 2 PLCs
  - Monitoring parallel (similar) sensor
  - Verification with different sensors

### • 2<sup>nd</sup> Verification of measured values

- Deploy a separate ICS for verification
- Redundancy at the Server level
  - Dual Hot standby servers
  - Dual redundant managed switch



2nd Verification SCCE – SCADA

Kaspersky Industrial Cybersecurity Conference 2019 Security

### **Cyber secured BMS operation**



Kaspersky Industrial Cybersecurity Conference 2019 Security SCCE – SCADA

### IT components for cyber secured BMS



NAC and IT operators

## **Cyber security methodologies**

- BMS health analysis using SIEM collectors
  - The collected data is constantly analyzed for flaws and anomalies
  - The SIEM output is forwarded to the SOC room for further analysis
- BMS Integration with building security
  - Information from CCTVs, door sensors, gates sensors in corridors, etc.
  - Smoke and fire detectors remain isolated and communicated via I/O ports
  - Operator initiated activation of fire-blocking doors from the security room

Kaspersky Industrial Cybersecurity Conference 2019 Security



#### **MSSP Cyber secured BMS Supervision**



Kaspersky Industrial Cybersecurity Conference 2019 Security

## **RDC and PPT based BMS defense principles**

- People
  - Train your team at all levels
  - Verify their technical knowledge
  - Conduct periodic drill
- Policies
  - Physical perimeter security
  - Use of credentials by people
  - Prevent 3rd party owned equipment
- Technologies
  - IDS data filtering & detection based on understanding of the process

- Redundancy
  - Fault not affecting business continuity
  - Critical items get special attention
  - Utility supplies 24-7-365 operation
  - Duplication of sensors and PLCs
- Diversity
  - Difference cyber defense measures
  - Attacker must learn several FW types.
- Complexity
  - PLCs perform protocol conversion and analyze the operation boundary

## **Reaching strongly secured BMS**

Define the main goals into your **BMS** specifications **Deal with vendors who take cyber** risks seriously Do not compromise on cyber **Security requirements** Always be ready for tomorrow's surprising challenges



Presented by: Daniel Ehrenreich Secure Communication and Control Experts Daniel@scce.co.il

Kaspersky Industrial Cybersecurity Conference 2019 Security SCCE – SCADA