Kaspersky Industrial Cybersecurity Conference 2021

kaspersky

Into the Dark switching off (some) solar power Parks

Into the Dark

switching off (some) solar power parks

Stephan Gerling

Senior Security Researcher Kaspersky ICS-CERT

@ObiWan666

Intro

What,

if someone can control

The Sun

Solar Power

Kaspersky ICS-CERT found a vulnerability in a product for solar power generation

Current status: Vendor working on Patch

How is the European Grid working?

A small introduction and what has this to do with the vulnerability

The Grid

Interconnected Network of continental Europe (entso-e) https://www.entsoe.eu/data/map/downloads/

50 hertz

50 Hertz is the base frequency in Europe Grid

Picture: (https://www.swissgrid.ch/de/home/operation/regulation/grid-stability.html)

9

Figure 2: Control scheme and actions starting with the system frequency

50 hertz

grid frequency levels

Frequency	Action	load sum	activation
51,5 Hz 50,2 Hz	all renewable energy disconnected from grid starting of demand side management renewa		automatic automatic
50,1Hz 50,0 Hz	no action Baseline	and one gy	
49,9 Hz 49,8 Hz	no action immediately activating +control power & load	d shedding of pumps (t<10s)	manual/automatic
49,2 Hz 49,0 Hz	direct load shedding of storage pumps load shedding LEVEL 1, ca. 12,5 %	ca. 12,5 %	automatic automatic
48,8 Hz 48,6 Hz	load shedding LEVEL 2, ca. 12,5 % load shedding LEVEL 3, ca. 12,5 %	ca. 25,0 % ca. 37,5 %	automatic automatic
48,4 Hz 47,5 Hz	load shedding LEVEL 4, ca. 12,5 % disconnecting power plants from grid	ca. 50,0 %	automatic automatic

Mains frequency

Energy usage in Germany April 2020

50 hertz

Germany has 4 grid operator

In total:

7000MW +control power

5500MW -control power

+CP = stand by power plants

-CP = disconnect solar power

How does the "load shedding" work

Germany use "ripple controller"

Done by

- Powerline communication
- RF signals (TETRA)

What do we know now

- Grid frequency
- Load shedding
- Demand side management
- + & control power needed

How does the "load shedding" work

Germany use "ripple controller"

Done by

- Powerline communication
- RF signals (TETRA)

The year Kaspersky was founded

Shodan results

21,724

TOP COUNTRIES

17

Portugal	7,719
Germany	4,657
Greece	2,436
France	883
Belgium	768

More...

query

Online solar systems

21,724

Portugal	7,719
Germany	4,657
Greece	2,436
France	883
Belgium	768
More	

(shodan.hq querry)

// TOTAL: 2,570

Only vulnerable Solar generator shown

#total ~2570

(shodan.hq querry)

// TOTAL: 2,570

querry

~2570 devices

~ 7200 MW worldwide

~ 2800 MW Europe

Germany has 7000MW reserve (+CP)

destabilization with ~2800MW now possible

= not enough to directly force a blackout

We need to find a amplifier trigger event or something else.

forcing instability

Load shedding

- TETRA
- LF (SEMAGYR TOP)
- others

How to prevent the risk:

Is Internet connectivity needed?

Mostly yes to get the Data

Use of VPN

 Configure the devices into a VPN to avoid exposure to the Internet

Encrypt over Air Data traffic for load shedding

What can we do?

A presentation and a leave-behind document are different in terms of audience and delivering content.

Presentation

You are talking to a live audience that has to be focused and engaged and wired into your topic.

Leave-behind document

This means you are leaving the document with a potential reader. Still make it clear and detailed.

It's intended for both

This document is intended to help you easily create any type of presentation. Treat your first notes like it's a leave-behind. No matter which type of the two you are preparing.

Write down all information about each point but keep it clear and concise.

Complete the draft, save a version of the file, and move long text to Notes below.

I am very confident that there will be no blackout

Thank you!

Subtitle

Stephan Gerling

Senior Security Researcher Kaspersky ICS-CERT

kaspersky

@obiwan666