

Kaspersky Industrial Cybersecurity Conference 2019

September 18-20, 2019, Sochi, Russia

Validating defense mechanisms of cyber-physical systems via attack tools

Francisco Furtado Salimah Liyakkathali

iTrust

Cyber physical attacks & defense

A6 Tool

Demo

Findings & Conclusion

Agenda

WHO WE ARE

FUNDING

NATIONAL RESEARCH FOUNDATION PRIME MINISTER'S OFFICE SINGAPORE

iTrust

SINGAPORE UNIVERSITY OF TECHNOLOGY AND DESIGN Centre for Research in Cyber Security

COLLABORATORS

London

Ben-Gurion University of the Negev

Imperial College

MISSOURI

WHO WE ARE

FOCUS AREAS

CPS Enterprise Security IoT

DISTINCTIVE VALUES

Applied Research Testbeds Multi-disciplinary Students Industry Collaboration

TESTBEDS

(IoT) Automatic Security

Secure Water Treatment (SWaT)

Electric Power and Intelligent Control (EPIC)

Kaspersky Industrial Cybersecurity Conference 2019

Water Distribution (WADI)

iTrust Event

Critical Infrastructure Security Showdown 2019

Cyber physical attacks

Maroochy shire sewage **Blaster worm 13 US auto plants** Offshore oil platform Petro chemical plant **Discovery of Stuxnet** Ukraine power grids **TRITON** attack

Attacks in ICS

Goh, Jonathan, et al. "A dataset to support research in the design of secure water treatment systems." *International Conference on Critical Information Infrastructures Security*. Springer, Cham, 2016.

Cyber physical defence mechanism

Anomaly Detection Mechanisms (ADM)

Design-based

Machine learningbased

Distributed Attack Detection (DAD)

- Design based ADM
- Uses invariants obtained from plant design
- Invariants cannot be compromised
- Attacks: 56 , Detected: 45

Sridhar Adepu, and Aditya Mathur. "Distributed detection of single-stage multipoint cyber attacks in a water treatment plant." *Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security*. ACM, 2016.

Sridhar Adepu, and Aditya Mathur. "Distributed Attack Detection in a Water Treatment Plant: Method and Case Study". *IEEE Transactions on Dependable and Secure Computing*, 2018

Kaspersky Industrial Cybersecurity Conference 2019

Experiments	Attack Type	Attacks	Detected
Exp-A	SS	10	10
	SM	5	5
	DS	3	5
	DM	2	2
	Total	20	20
Exp-I	SS	11	9
	SM	1	1
	SS: Physical	1	1
	DoS (HMI)	3	0
	DoS (SCADA)	1	0
	DoS (PLC-HMI)	1	0
	Total	18	11
Exp-S	S1 (SS)	4	0
	S2 (SS)	13	13
	Total	17	13
Exp-DoS	DoS (PLC)	1	1
	Total	1	1

EFFECTIVENESS OF DAD IN DETECTING ATTACK:

Why is there a need for an attack tool?

SWaT Network Architecture

Level 3 – Operation Management

Level 2 – Supervisory Control

Level 1 – Plant control network

Level 0 - Process

Þ

A6 Tool suite tool

A6-L1

A6 Tool suite tool

A6-L0

Kaspersky Industrial Cybersecurity Conference 2019

Urbina, David I., et al. "Attacking Fieldbus Communications in ICS: Applications to the SWaT Testbed." *SG-CRC*. 2016.

Attack Design

Mutation Operators

Operator	Description	Example
Add Static Delta (ASD)	Adds/subtracts an absolute, unchanging δ to state measurements	ASD(500) ⇒ Before: LIT101=300 After: LIT101=800
Add Limits Delta (ALD)	Adds/subtracts random value between $-\delta$ and $+\delta$ to state measurements	ALD(10) ⇒ Before: LIT101=300 After: LIT101=307
Add Random Delta (ARD)	Adds/subtracts a random value between δ 1 and δ 2 to state measurements	ARD(100, 200) ⇒ Before: LIT101=300 After: LIT101=450 ARD(100, 200) ⇒ Before: LIT101=300 After: LIT101=450

Mutation Operators

Operator	Description	Example
Set to Zero	Set state measurement to zero	Before: MV101=1 After: MV101=0
Set to One	Set state measurement to one	Before: P101=0 After: P101=1
Set to Static	Set state measurement to static value	STS(756) ⇒ Before: LIT101=300 After: LIT101=756
Set to Random	Set state measurement to a random value between $\delta 1$ and $\delta 2$	STR(100, 200) ⇒ Before: LIT101=300 After: LIT101=179

Mutation Operators

Operator	Description	Example
Bit Shift Left	State measurement is bit-shifted to left by δ bits	BSL(4) ⇒ Before: LIT101=300 After: LIT101=5982.85
Bit Shift Right	State measurement is bit-shifted to right by δ bits	BSR(4)⇒ Before: LIT101=300 After: LIT101=3356044.00

Command Validators

Operator	Description	Example
Valid	Set state measurement to valid input	Before: P101 = 1 (On) After: P101 = 0 (Off)
Invalid	Set state measurement to invalid input	Before: P101 = 0 (Off) After: P101 = -5 (Invalid)

L1 Attack Demo

Stage 1 strategy is to have P101 and P102 be interlocked with LIT301

- Low Setpoint: $800mm \Rightarrow P101/P102$ START
- High Setpoint: $1000mm \Rightarrow P101/P102 STOP$

SSPMS Attack: Mutating of LIT301 value to LOW from PLC3 to PLC1

LO Attack Demo

Stage 1 strategy is to have MV101 be activated by LIT101

- a) Low Low Setpoint: 250mm & P101/P102 STOP AND MV101 OPEN
- b) Low Setpoint: 500mm MV101 OPEN
- c) High Setpoint: 800mm MV101 CLOSE
- d) High High Setpoint: 1200mm Alarm

SSSMP Attack: Mutating P101 & MV101 status to PLC1 and command to actuators

Kaspersky Industrial Cybersecu

Findings

- 1. Out of range values and commands
- 2. Corelated Invariants across PLCs
- 3. False positives

Current Work

- 1. Automated generation of attacks
- 2. Creating a test suite for ADMs to be tested against and given a benchmark

Specials thanks to

Sridhar Adepu

Gayathri Sugumar

Nils Ole Tippenhauer

Aditya P. Mathur

Questions?

Francisco Furtado

francisco_dos@sutd.edu.sg

Salimah Liyakkathali

liyakkathali@sutd.edu.sg

Kaspersky Industrial Cybersecurity Conference 2019

September 18-20, 2019, Sochi, Russia

Thank you!

1 -

